Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Boron nitride nanotubes (BNNTs) are the perfect candidate for nanofillers in high-temperature multifunctional ceramics due to their high thermal stability, oxidation resistance, good mechanical properties, high thermal conductivity, and radiation shielding. In this paper, 3D printed ceramic nanocomposite with 0.1 wt% of BNNT was prepared by fusing it at high temperatures. Samples were built with three different print directions to study the effect of print layers on mechanical performance along with BNNT addition. Dynamic mechanical analysis is performed to study the length effect of nanoscale reinforcements on the mechanical properties of the printed ceramic composites reporting significant improvements up to 55% in bending strength and 72% in bending modulus with just 0.1 wt% BNNT addition. A 63% thermal diffusivity improvement of ceramic by adding BNNTs is observed using laser flash analysis. The bridging and pull-out effect of nanotubes with a longer aspect ratio was observed with high-resolution microscopy. Such composites’ modeling and simulation approaches are crucial for virtual testing and industrial applications. Understanding the effect of nanoscale synthetic fillers for 3D printed high-temperature ceramics can revolutionize future extreme environment structures.more » « less
-
The objective of this paper is to predict the fiber/matrix interfacial debond strength in composites. Atomic force microscopy (AFM) images of the surface topography of a de-sized carbon fiber reveal that there are surface asperities present at various length scales ranging from a nanometer to several microns. These asperities are likely caused by shrinkage of the polyacrylonitrile (PAN) precursor during the graphitization process. In order to bridge the length scales, a Fourier series-decomposition covering a range of asperity wavelengths and amplitudes is necessary to effectively capture the roughness of the fiber surface at different length scales. Further, once a surface asperity profile has been resolved into individual subcomponents using Fourier-decomposition, MD simulations can then be employed to obtain the interfacial shear strength of the subcomponent asperity of a given amplitude and wavelength. Finally, by recombining the peak interfacial shear force obtained from each of these subcomponents into the overall shear force for the fiber surface profile, the length-scale -averaged shear strength can be obtained for any given asperity. The objective of this paper is to use this novel approach to determine the interfacial shear strength of de-sized carbon fiber embedded in an epoxy matrix and compare predicted results with experimental data.more » « less
An official website of the United States government
